SNAI1 promotes the development of HCC through the enhancement of proliferation and inhibition of apoptosis

نویسندگان

  • Jianni Qi
  • Tao Li
  • Hongjun Bian
  • Feifei Li
  • Ying Ju
  • Shanshan Gao
  • Jingran Su
  • Wanhua Ren
  • Chengyong Qin
چکیده

SNAI1, a zinc-finger transcription factor, plays an important role in the induction of epithelial-mesenchymal transition (EMT) in various cancers. However, the possible functions of SNAI1 in the proliferation and apoptosis of hepatocellular carcinoma have not been clearly identified. In this study, we investigated the effects and mechanisms of SNAI1 in the proliferation and apoptosis of hepatocellular carcinoma using clinical samples and cell lines. We found that SNAI1 is highly expressed in the tissues of liver cancer compared with adjacent nontumor tissues. SNAI1 is also highly expressed in the hepatoma cell lines HepG2, SMMC-7721, and BEL-7402 compared with the human normal liver cell line L02. We also observed that SNAI1 expression was correlated with distal metastasis, incomplete tumor capsule formation, and histological differentiation in hepatocellular carcinoma (HCC). Moreover, we demonstrated that knockdown of SNAI1 via lentiviral vectors of RNAi against SNAI inhibited cell proliferation by inducing G1 arrest, which was accompanied by the downregulation of cyclin D1 but not that of cyclin A. In addition, knockdown of SNAI1 promoted apoptosis by decreasing the expression of Bcl-2. In conclusion, our findings revealed that SNAI1 is involved in the development of hepatocellular carcinoma via regulating the growth and apoptosis of tumor cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

miR-92a promotes hepatocellular carcinoma cells proliferation and invasion by FOXA2 targeting

Objective(s): MicroRNAs (miRNAs) are considered as powerful, post-transcriptional regulators of gene expression in hepatocellular carcinoma cells (HCC). However, the function of miR-92a is still unclear in HCC. Materials and Methods: Expression of miR-92a in human HCC cell lines was evaluated using qRT-PCR. MTT assay and transwell assay were used to examine the function of miR-92a in HepG2 and ...

متن کامل

Effect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.

Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...

متن کامل

Downregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells

Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016